読者です 読者をやめる 読者になる 読者になる

ものづくりブログ

ゼロからスタートして何かを作って世に出すまでのことを書くブログです.

もう少し進んだ電気理論の話(抵抗の合成)

 

こんにちは.

 

以前このブログで1回だけ電気理論の話をしたことがありますが,その時は本当に基本だけのお話でした.

いわば,以下のような最高に単純な回路のみ扱えるような理論です.

 

f:id:daisukekmr:20150127223554p:plain

 

この時の電流は,

 

V = RIより,

I = V/Rなので,

5/1,000 = 5mA

 

のように計算することが出来ました.

 

では,下記のような場合はどうでしょう.

 

f:id:daisukekmr:20150201185626p:plain

 

抵抗を水車,電流を水流と見立てると,水流を妨げる力は2個の水車の合計になることが想像できます.これは電気にも当てはまるため,回路中の合計の抵抗値Rは下記の式で表されます.

 

R = R1 + R2

 

つまり,回路に流れる電流Iは,

 

I = V/R = V/(R1+R2)

5V/(1,000 + 500) = 約3.3 mA

 

では下記のような場合はどうでしょうか.

 

f:id:daisukekmr:20150201185735p:plain

 

この場合も水路に例えて考えましょう.水路が分岐していますが,分かれる前と別れた後の水流の合計は変わらないはずです.これは電気の場合も同じです.このため,分岐前の電流Iは以下の式で表すことが出来ます.

 

I = I1 + I2

ただし,I1: R1を流れる電流 I2 = R2を流れる電流

 

この時,R1とR2の前後にかかる電圧はどちらも等しくなります.なぜなら,各抵抗のすぐ手前の電圧は分岐直前の電圧(電源電圧)に等しく,各抵抗のすぐ後ろの電圧は合流直後の電圧と同じためです.これを踏まえて考えると,

 

I = I1 + I2

V= V1 = V2

I1 = V/R1, I2 = V/R2より,

V/R1 + V/R2 = I

V(1/R1+1/R2) = I

I/V = 1/R1 + 1/R2

ここで,R = V/Iなので,

1/R = I/V = 1/R1 + 1/R2 よって,

1/R = 1/R1 + 1/R2

 

となります.ちょっと長いですが,要はR1とR2を足すには,1をそれぞれの抵抗値で割って(1/R1と1/R2),それらを足して(1/R1 + 1/R2),その数字で1を割れば出ます,ということですね.

 

これで複数の抵抗が1個の回路に含まれる場合の計算ができるようになりました.これで扱える回路が一気に増えましたね.

 

 

参考文献

特になし.